
LIBCGRAPH(3) LIBCGRAPH(3)

NAME
libcgraph − abstract graph library

SYNOPSIS
#include <graphviz/cgraph.h>

TYPES
Agraph_t;
Agnode_t;
Agedge_t;
Agdesc_t;
Agdisc_t;
Agsym_t;

GRAPHS
Agraph_t *agopen(char*name, Agdesc_t kind, Agdisc_t *disc);
int agclose(Agraph_t*g);
Agraph_t *agread(void *channel, Agdisc_t *);
Agraph_t *agconcat(Agraph_t*g, void *channel, Agdisc_t *disc)
int agwrite(Agraph_t*g, void *channel);
int agnnodes(Agraph_t*g),agnedges(Agraph_t *g);
void agreadline(intline_no);
void agsetfile(char*file_name);
int agisdirected(Agraph_t* g),agisundirected(Agraph_t * g),agisstrict(Agraph_t * g);

SUBGRAPHS
Agraph_t *agsubg(Agraph_t*g, char *name, int createflag);
Agraph_t *agidsubg(Agraph_t* g, unsigned long id, int cflag);
Agraph_t *agfstsubg(Agraph_t*g), agnxtsubg(Agraph_t *);
Agraph_t *agparent(Agraph_t*g),*agroot(Agraph_t *g);
int agdelsubg(Agraph_t* g, Agraph_t * sub); /* same as agclose() */

NODES
Agnode_t *agnode(Agraph_t*g, char *name, int createflag);
Agnode_t *agidnode(Agraph_t*g, ulong id, int createflag);
Agnode_t *agsubnode(Agraph_t*g, Agnode_t *n, int createflag);
Agnode_t *agfstnode(Agraph_t*g);
Agnode_t *agnxtnode(Agnode_t*n);
Agnode_t *agprvnode(Agnode_t*n);
Agnode_t *aglstnode(Agnode_t*n);
int agdelnode(Agraph_t*g, Agnode_t *n);
int agdegree(Agnode_t *n, int use_inedges, int use_outedges);

EDGES
Agedge_t *agedge(Agnode_t*t, Agnode_t *h, char *name, int createflag);
Agedge_t *agidedge(Agraph_t* g, Agnode_t * t, Agnode_t * h, unsigned long id, int createflag);
Agedge_t *agsubedge(Agraph_t*g, Agedge_t *e, int createflag);
Agnode_t *aghead(Agedge_t*e), *agtail(Agedge_t *e);
Agedge_t *agfstedge(Agnode_t*n);
Agedge_t *agnxtedge(Agedge_t*e, Agnode_t *n);
Agedge_t *agfstin(Agnode_t*n);
Agedge_t *agnxtin(Agedge_t*e);
Agedge_t *agfstout(Agnode_t*n);
Agedge_t *agnxtout(Agedge_t*e);

30 JULY 2007 1

LIBCGRAPH(3) LIBCGRAPH(3)

int agdeledge(Agraph_t*g, Agedge_t *e);

STRING ATTRIBUTES
Agsym_t *agattr(Agraph_t *g, int kind, char *name, char *value);
Agsym_t *agattrsym(void *obj, char *name);
Agsym_t *agnxtattr(Agraph_t*g, int kind, Agsym_t *attr);
char *agget(void *obj, char *name);
char *agxget(void *obj, Agsym_t *sym);
int agset(void *obj, char *name, char *value);
int agxset(void *obj, Agsym_t *sym, char *value);
int agsafeset(void *obj, char *name, char *value, char *def);

RECORDS
void *agbindrec(void *obj, char *name, unsigned int size, move_to_front);
Agrec_t *aggetrec(void *obj, char *name, int move_to_front);
int agdelrec(Agraph_t*g, void *obj, char *name);
int agcopyattr(void *, void *);
void aginit(Agraph_t* g, int kind, char *rec_name, int rec_size, int move_to_front);
void agclean(Agraph_t* g, int kind, char *rec_name);

CALLB ACKS
Agcbdisc_t *agpopdisc(Agraph_t*g);
void agpushdisc(Agraph_t*g, Agcbdisc_t *disc);
void agmethod(Agraph_t*g, void *obj, Agcbdisc_t *disc, int initflag);

MEMORY
void *agalloc(Agraph_t *g, size_t request);
void *agrealloc(Agraph_t*g, void *ptr, size_t oldsize, size_t newsize);
void agfree(Agraph_t*g, void *ptr);

GENERIC OBJECTS
Agraph_t *agraphof(void*);
Agraph_t *agroot(void*);
int agcontains(Agraph_t*,void*);
char *agnameof(void*);
void agdelete(Agraph_t*g, void *obj);
Agrec_t *AGDAT A(void *obj);
ulong AGID(void *obj);
int AGTYPE(void *obj);

DESCRIPTION
Libcgraph supports graph programming by maintaining graphs in memory and reading and writing graph
files. Graphsare composed of nodes, edges, and nested subgraphs. These graph objects may be attributed
with string name-value pairs and programmer-defined records (see Attributes).

All of Libcgraph’s global symbols have the prefixag (case varying).

GRAPH AND SUBGRAPHS
A ‘‘main’’ or ‘‘root’’ graph defines a namespace for a collection of graph objects (subgraphs, nodes, edges)
and their attributes. Objectsmay be named by unique strings or by 32-bit IDs.

agopencreates a new graph with the given name and kind. (Graph kinds areAgdirected, Agundirected,
Agstrictdirected, and Agstrictundirected. A strict graph cannot have multi-edges or self-arcs.)agclose
deletes a graph, freeing its associated storage.agread, agwrite, and agconcatperform file I/O using the
graph file language described below. agread constructs a new graph while agconcat merges the file

30 JULY 2007 2

LIBCGRAPH(3) LIBCGRAPH(3)

contents with a pre-existing graph. Though I/O methods may be overridden, the default is that the channel
argument is a stdio FILE pointer. agsetfileandagreadline are helper functions that simply set the current
file name and input line number for subsequent error reporting.

agsubgfinds or creates a subgraph by name.A new subgraph is is initially empty and is of the same kind
as its parent. Nested subgraph trees may be created.A subgraph’s name is only interpreted relative to its
parent. Aprogram can scan subgraphs under a given graph usingagfstsubgand agnxtsubg.A subgraph is
deleted withagdelsubg(or agclose).

By default, nodes are stored in ordered sets for efficient random access to insert, find, and delete nodes.
The edges of a node are also stored in ordered sets. The sets are maintained internally as splay tree dictio-
naries using Phong Vo’s cdt library.

agnnodes, agnedges, and agdegreereturn the sizes of node and edge sets of a graph.The agdegree
returns the size of the edge set of a nodes, and takes flags to select in-edges, out-edges, or both.

An Agdisc_t defines callbacks to be invoked by libcgraph when initializing, modifying, or finalizing graph
objects. (Casualusers can ignore the following.) Disciplines are kept on a stack. Libcgraph automatically
calls the methods on the stack, top-down. Callbacksare installed withagpushdisc, uninstalled with
agpopdisc, and can be held pending or released viaagcallbacks.

(Casual users may ignore the following. WhenLibcgraph is compiled with Vmalloc (which is not the
default), each graph has its own heap. Programmers may allocate application-dependent data within the
same heap as the rest of the graph. The advantage is that a graph can be deleted by atomically freeing its
entire heap without scanning each individual node and edge.

NODES
A node is created by giving a unique string name or programmer defined 32-bit ID, and is represented by a
unique internal object. (Node equality can checked by pointer comparison.)

agnodesearches in a graph or subgraph for a node with the given name, and returns it if found. If not
found, if createflag is boolean true a new node is created and returned, otherwise a nil pointer is returned.
agidnodeallows a programmer to specify the node by a unique 32-bit ID.agsubnodeperforms a similar
operation on an existing node and a subgraph.agfstnodeandagnxtnodescan node lists.agprvnodeand
aglstnodeare symmetric but scan backward. Thedefault sequence is order of creation (object timestamp.)
agdelnoderemoves a node from a graph or subgraph.

EDGES
An abstract edge has two endpoint nodes called tail and head where the all outedges of the same node have
it as the tail value and similarly all inedges have it as the head. In an undirected graph, head and tail are
interchangable. Ifa graph has multi-edges between the same pair of nodes, the edge’s string name behaves
as a secondary key. agedgesearches in a graph of subgraph for an edge between the given endpoints (with
an optional multi-edge selector name) and returns it if found.Otherwise, ifcreateflag is boolean true, a
new edge is created and returned: otherwise a nil pointer is returned. If thename is (char*)0 then an
anonymous internal value is generated.agidedgeallows a programmer to create an edge by giving its
unique 32-bit ID.agfstin, agnxtint, agfstout, and agnxtout visit directed in- and out- edge lists, and ordi-
narily apply only in directed graphs.agfstedgeandagnxtedgevisit all edges incident to a node.agtail
andagheadget the endpoint of an edge.

INTERNAL ATTRIBUTES
Programmer-defined values may be dynamically attached to graphs, subgraphs, nodes, and edges.Such
values are either uninterpreted binary records (for implementing efficient algorithms) or character string
data (for I/O).

STRING ATTRIBUTES
String attributes are handled automatically in reading and writing graph files.A string attribute is identified
by name and by an internal symbol table entry (Agsym_t) created by Libcgraph.Attributes of nodes,
edges, and graphs (with their subgraphs) have separate namespaces. The contents of anAgsym_t is listed
below, followed by primitives to operate on string attributes.

30 JULY 2007 3

LIBCGRAPH(3) LIBCGRAPH(3)

typedef struct Agsym_s { /* symbol in one of the above dictionaries */
Dtlink_t link;
char *name; /* attribute’s name */
char *defval; /* its default value for initialization */
int id; /* its index in attr[] */
unsigned charkind; /* referent object type */
unsigned char fixed; /* immutable value */

} A gsym_t;

agattr creates or looks up attributes. kind may beAGRAPH, AGNODE, or AGEDGE. If value is
(char*)0), the request is to search for an existing attribute of the given kind and name. Otherwise, if the
attribute already exists, its default for creating new objects is set to the given value; if it does not exist, a
new attribute is created with the given default, and the default is applied to all pre-existing objects of the
given kind. If g is NIL, the default is set for all graphs created subsequently. agattrsym is a helper function
that looks up an attribute for a graph object given as an argument. agnxtattrP permits traversing the list
of attrib utes of a given type. If NIL is passed as an argument it gets the first attribute, otherwise it
retur ns the next one in succession or returns NIL at the end of the list. agget and agset allow fetching
and updating a string attribute for an object taking the attribute name as an argument. agxget and
agxset do this but with an attribute symbol table entry as an argument (to avoid the cost of the string
lookup). agsafesetis a convenience function that ensures the given attrib ute is declared before setting
it locally on an object.

Note that Libcgraph performs its own storage management of strings. The caller does not need to
dynamically allocate storage.

RECORDS
Uninterpreted records may be attached to graphs, subgraphs, nodes, and edges for efficient operations on
values such as marks, weights, counts, and pointers needed by algorithms. Application programmers define
the fields of these records, but they must be declared with a common header as shown below.

typedef struct Agrec_s {
Agrec_t header;
/* programmer-defined fields follow */

} A grec_t;

Records are created and managed by Libcgraph. A programmer must explicitly attach them to the objects in
a graph, either to individual objects one at a time viaagbindrec, or to all the objects of the same class in a
graph viaaginit. The name argument a record distinguishes various types of records, and is programmer
defined (Libcgraph reserves the prefix_ag). If size is 0, the call toagbindrec is simply a lookup.agdelrec
is the deletes records one at a time.agcleandoes the same for all objects of the same class in an entire
graph.

Internally, records are maintained in circular linked lists attached to graph objects.To allow referencing
application-dependent data without function calls or search, Libcgraph allows setting and locking the list
pointer of a graph, node, or edge on a particular record. This pointer can be obtained with the macro
AGDATA(obj). A cast, generally within a macro or inline function, is usually applied to convert the list
pointer to an appropriate programmer-defined type.

To control the setting of this pointer, the move_to_front flag may be AG_MTF_FALSE ,
AG_MTF_SOFT, or AG_MTF_HARD accordingly. The AG_MTF_SOFT field is only a hint that
decreases overhead in subsequent calls ofaggetrec; AG_MTF_HARD guarantees that a lock was
obtained. To release locks, useAG_MTF_SOFT or AG_MTF_FALSE . Use of this feature implies coop-
eration or at least isolation from other functions also using the move-to-front convention.

30 JULY 2007 4

LIBCGRAPH(3) LIBCGRAPH(3)

DISCIPLINES
(The following is not intended for casual users.)Programmer-defined disciplines customize certain
resources- ID namespace, memory, and I/O - needed by Libcgraph.A discipline struct (or NIL) is passed at
graph creation time.

struct Agdisc_s { /* user’s discipline */
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *io;

} ;

A default discipline is supplied when NIL is given for any of these fields.

An ID allocator discipline allows a client to control assignment of IDs (uninterpreted 32-bit values) to
objects, and possibly how they are mapped to and from strings.

struct Agiddisc_s { /* object ID allocator */
void *(*open)(Agraph_t*g); /* associated with a graph */
int (*map)(void *state, int objtype, char *str, ulong *id, int createflag);
int (*alloc)(void *state, int objtype, ulong id);
void (*free)(void *state, int objtype, ulong id);
char *(*print)(void *state, int objtype, ulong id);
void (*close)(void *state);

} ;

open permits the ID discipline to initialize any data structures that maintains per individual graph.Its
return value is then passed as the first argument to all subsequent ID manager calls.

alloc informs the ID manager that Libcgraph is attempting to create an object with a specific ID that was
given by a client. TheID manager should return TRUE (nonzero) if the ID can be allocated, or FALSE
(which aborts the operation).

free is called to inform the ID manager that the object labeled with the given ID is about to go out of exis-
tence.

map is called to create or look-up IDs by string name (if supported by the ID manager). Returning TRUE
(nonzero) in all cases means that the request succeeded (with a valid ID stored through result. There are
four cases:

name != NULL and createflag == 1: This requests mapping a string (e.g. a name in a graph file) into a new
ID. If the ID manager can comply, then it stores the result and returns TRUE. It is then also responsible for
being able to print the ID again as a string. Otherwise the ID manager may return FALSE but it must
implement the following (at least for graph file reading and writing to work):

name == NULL and createflag == 1: The ID manager creates a unique new ID of i ts own choosing.
Although it may return FALSE if it does not support anonymous objects, but this is strongly discouraged
(to support "local names" in graph files.)

name != NULL and createflag == 0: This is a namespace probe. If the name was previously mapped into
an allocated ID by the ID manager, then the manager must return this ID. Otherwise, the ID manager may
either return FALSE, or may store any unallocated ID into result. (This is convenient, for example, if names
are known to be digit strings that are directly converted into 32 bit values.)

name == NULL and createflag == 0: forbidden.

30 JULY 2007 5

LIBCGRAPH(3) LIBCGRAPH(3)

print should return print is allowed to return a pointer to a static buffer; a caller must copy its value if
needed past subsequent calls. NULL should be returned by ID managers that do not map names.

The map and alloc calls do not pass a pointer to the newly allocated object. If a client needs to install
object pointers in a handle table, it can obtain them via new object callbacks.

struct Agiodisc_s {
int (*fread)(void *chan, char *buf, int bufsize);
int (*putstr)(void *chan, char *str);
int (*flush)(void *chan); /* sync */
/* error messages? */

} ;

struct Agmemdisc_s { /* memory allocator */
void *(*open)(void); /* independent of other resources */
void *(*alloc)(void *state, size_t req);
void *(*resize)(void *state, void *ptr, size_t old, size_t req);
void (*free)(void *state, void *ptr);
void (*close)(void *state);

} ;

EXAMPLE PROGRAM
#include <graphviz/cgraph.h>
typedef struct mydata_s {Agrec_t hdr; int x,y,z;} mydata;

main(int argc, char **argv)
{

Agraph_t *g;
Agnode_t *v;
Agedge_t *e;
Agsym_t *attr;
Dict_t *d
int cnt;
mydata *p;

if (g = agread(stdin,NIL(Agdisc_t*))) {
cnt = 0; attr = 0;
while (attr = agnxtattr(g, AGNODE, attr)) cnt++;
printf("The graph %s has %d attributes0,agnameof(g),cnt);

/* make the graph have a node color attribute, default is blue */
attr = agattr(g,AGNODE,"color","blue");

/* create a new graph of the same kind as g */
h = agopen("tmp",g->desc);

/* this is a way of counting all the edges of the graph */
cnt = 0;
for (v = agfstnode(g); v; v = agnxtnode(g,v))

for (e = agfstout(g,v); e; e = agnxtout(g,e))
cnt++;

/* attach records to edges */
for (v = agfstnode(g); v; v = agnxtnode(g,v))

30 JULY 2007 6

LIBCGRAPH(3) LIBCGRAPH(3)

for (e = agfstout(g,v); e; e; = agnxtout(g,e)) {
p = (mydata*) agbindrec(g,e,"mydata",sizeof(mydata),TRUE);
p->x = 27; /* meaningless data access example */

((mydata*)(AGDAT A(e)))->y = 999; /* another example */
}

}
}

EXAMPLE GRAPH FILES
digraph G {

a -> b;
c [shape=box];
a -> c [weight=29,label="some text];
subgraph anything {

/* the following affects only x,y,z */
node [shape=circle];
a; x; y -> z; y -> z; /* multiple edges */

}
}

strict graph H {
n0 -- n1 -- n2 -- n0; /* a cycle */
n0 -- {a b c d}; /* a star */
n0 -- n3;
n0 -- n3 [weight=1]; /* same edge because graph is strict */

}

SEE ALSO
Libcdt(3)

BUGS
It is difficult to change endpoints of edges, delete string attributes or modify edge keys. Thework-around is
to create a new object and copy the contents of an old one (but new object obviously has a different ID,
internal address, and object creation timestamp).

The API lacks convenient functions to substitute programmer-defined ordering of nodes and edges but in
principle this can be supported.

AUTHOR
Stephen North, north@research.att.com, AT&T Research.

30 JULY 2007 7

